import random
from chatterbot.storage import StorageAdapter
[docs]
class SQLStorageAdapter(StorageAdapter):
"""
The SQLStorageAdapter allows ChatterBot to store conversation
data in any database supported by the SQL Alchemy ORM.
All parameters are optional, by default a sqlite database is used.
It will check if tables are present, if they are not, it will attempt
to create the required tables.
:keyword database_uri: eg: sqlite:///database_test.sqlite3',
The database_uri can be specified to choose database driver.
:type database_uri: str
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
from sqlalchemy import create_engine, inspect, event
from sqlalchemy import Index
from sqlalchemy.engine import Engine
from sqlalchemy.orm import sessionmaker
self.database_uri = kwargs.get('database_uri', False)
# None results in a sqlite in-memory database as the default
if self.database_uri is None:
self.database_uri = 'sqlite://'
# Create a file database if the database is not a connection string
if not self.database_uri:
self.database_uri = 'sqlite:///db.sqlite3'
self.engine = create_engine(self.database_uri)
if self.database_uri.startswith('sqlite://'):
@event.listens_for(Engine, 'connect')
def set_sqlite_pragma(dbapi_connection, connection_record):
dbapi_connection.execute('PRAGMA journal_mode=WAL')
dbapi_connection.execute('PRAGMA synchronous=NORMAL')
if not inspect(self.engine).has_table(self.engine, 'statement'):
self.create_database()
# Check if the expected index exists on the text field of the statement table
if not inspect(self.engine).has_index('statement', 'idx_cb_search_text'):
from chatterbot.ext.sqlalchemy_app.models import Statement
search_text_index = Index(
'idx_cb_search_text',
Statement.search_text
)
search_text_index.create(bind=self.engine)
# Check if the expected index exists on the in_response_to field of the statement table
if not inspect(self.engine).has_index('statement', 'idx_cb_search_in_response_to'):
from chatterbot.ext.sqlalchemy_app.models import Statement
search_in_response_to_index = Index(
'idx_cb_search_in_response_to',
Statement.search_in_response_to
)
search_in_response_to_index.create(bind=self.engine)
self.Session = sessionmaker(bind=self.engine, expire_on_commit=True)
[docs]
def get_statement_model(self):
"""
Return the statement model.
"""
from chatterbot.ext.sqlalchemy_app.models import Statement
return Statement
[docs]
def get_tag_model(self):
"""
Return the conversation model.
"""
from chatterbot.ext.sqlalchemy_app.models import Tag
return Tag
def model_to_object(self, statement):
from chatterbot.conversation import Statement as StatementObject
return StatementObject(**statement.serialize())
[docs]
def count(self):
"""
Return the number of entries in the database.
"""
Statement = self.get_model('statement')
session = self.Session()
statement_count = session.query(Statement).count()
session.close()
return statement_count
[docs]
def remove(self, statement_text):
"""
Removes the statement that matches the input text.
Removes any responses from statements where the response text matches
the input text.
"""
Statement = self.get_model('statement')
session = self.Session()
query = session.query(Statement).filter_by(text=statement_text)
record = query.first()
session.delete(record)
self._session_finish(session)
[docs]
def filter(self, **kwargs):
"""
Returns a list of objects from the database.
The kwargs parameter can contain any number
of attributes. Only objects which contain all
listed attributes and in which all values match
for all listed attributes will be returned.
"""
from sqlalchemy import or_
Statement = self.get_model('statement')
Tag = self.get_model('tag')
session = self.Session()
page_size = kwargs.pop('page_size', 1000)
order_by = kwargs.pop('order_by', None)
tags = kwargs.pop('tags', [])
exclude_text = kwargs.pop('exclude_text', None)
exclude_text_words = kwargs.pop('exclude_text_words', [])
persona_not_startswith = kwargs.pop('persona_not_startswith', None)
search_text_contains = kwargs.pop('search_text_contains', None)
# Convert a single sting into a list if only one tag is provided
if type(tags) == str:
tags = [tags]
if len(kwargs) == 0:
statements = session.query(Statement).filter()
else:
statements = session.query(Statement).filter_by(**kwargs)
if tags:
statements = statements.join(Statement.tags).filter(
Tag.name.in_(tags)
)
if exclude_text:
statements = statements.filter(
~Statement.text.in_(exclude_text)
)
if exclude_text_words:
or_word_query = [
Statement.text.ilike('%' + word + '%') for word in exclude_text_words
]
statements = statements.filter(
~or_(*or_word_query)
)
if persona_not_startswith:
statements = statements.filter(
~Statement.persona.startswith('bot:')
)
if search_text_contains:
or_query = [
Statement.search_text.contains(word) for word in search_text_contains.split(' ')
]
statements = statements.filter(
or_(*or_query)
)
if order_by:
if 'created_at' in order_by:
index = order_by.index('created_at')
order_by[index] = Statement.created_at.asc()
statements = statements.order_by(*order_by)
total_statements = statements.count()
for start_index in range(0, total_statements, page_size):
for statement in statements.slice(start_index, start_index + page_size):
yield self.model_to_object(statement)
session.close()
[docs]
def create(self, **kwargs):
"""
Creates a new statement matching the keyword arguments specified.
Returns the created statement.
"""
Statement = self.get_model('statement')
Tag = self.get_model('tag')
session = self.Session()
tags = set(kwargs.pop('tags', []))
if 'search_text' not in kwargs:
kwargs['search_text'] = self.tagger.get_text_index_string(kwargs['text'])
if 'search_in_response_to' not in kwargs:
in_response_to = kwargs.get('in_response_to')
if in_response_to:
kwargs['search_in_response_to'] = self.tagger.get_text_index_string(in_response_to)
statement = Statement(**kwargs)
for tag_name in tags:
tag = session.query(Tag).filter_by(name=tag_name).first()
if not tag:
# Create the tag
tag = Tag(name=tag_name)
statement.tags.append(tag)
session.add(statement)
session.commit()
session.refresh(statement)
statement_object = self.model_to_object(statement)
self._session_finish(session)
return statement_object
[docs]
def create_many(self, statements):
"""
Creates multiple statement entries.
"""
Statement = self.get_model('statement')
Tag = self.get_model('tag')
session = self.Session()
create_statements = []
create_tags = {}
# Check if any statements already have a search text
have_search_text = any(statement.search_text for statement in statements)
# Generate search text values in bulk
if not have_search_text:
search_text_documents = self.tagger.as_nlp_pipeline([statement.text for statement in statements])
response_search_text_documents = self.tagger.as_nlp_pipeline([statement.in_response_to or '' for statement in statements])
for statement, search_text_document, response_search_text_document in zip(
statements, search_text_documents, response_search_text_documents
):
statement.search_text = search_text_document._.search_index
statement.search_in_response_to = response_search_text_document._.search_index
for statement in statements:
statement_data = statement.serialize()
tag_data = statement_data.pop('tags', [])
statement_model_object = Statement(**statement_data)
new_tags = set(tag_data) - set(create_tags.keys())
if new_tags:
existing_tags = session.query(Tag).filter(
Tag.name.in_(new_tags)
)
for existing_tag in existing_tags:
create_tags[existing_tag.name] = existing_tag
for tag_name in tag_data:
if tag_name in create_tags:
tag = create_tags[tag_name]
else:
# Create the tag if it does not exist
tag = Tag(name=tag_name)
create_tags[tag_name] = tag
statement_model_object.tags.append(tag)
create_statements.append(statement_model_object)
session.add_all(create_statements)
session.commit()
[docs]
def update(self, statement):
"""
Modifies an entry in the database.
Creates an entry if one does not exist.
"""
Statement = self.get_model('statement')
Tag = self.get_model('tag')
if statement is not None:
session = self.Session()
record = None
if hasattr(statement, 'id') and statement.id is not None:
record = session.query(Statement).get(statement.id)
else:
record = session.query(Statement).filter(
Statement.text == statement.text,
Statement.conversation == statement.conversation,
).first()
# Create a new statement entry if one does not already exist
if not record:
record = Statement(
text=statement.text,
conversation=statement.conversation,
persona=statement.persona
)
# Update the response value
record.in_response_to = statement.in_response_to
record.created_at = statement.created_at
record.search_text = self.tagger.get_text_index_string(statement.text)
if statement.in_response_to:
record.search_in_response_to = self.tagger.get_text_index_string(statement.in_response_to)
for tag_name in statement.get_tags():
tag = session.query(Tag).filter_by(name=tag_name).first()
if not tag:
# Create the record
tag = Tag(name=tag_name)
record.tags.append(tag)
session.add(record)
self._session_finish(session)
[docs]
def get_random(self):
"""
Returns a random statement from the database.
"""
Statement = self.get_model('statement')
session = self.Session()
count = self.count()
if count < 1:
raise self.EmptyDatabaseException()
random_index = random.randrange(0, count)
random_statement = session.query(Statement)[random_index]
statement = self.model_to_object(random_statement)
session.close()
return statement
[docs]
def drop(self):
"""
Drop the database.
"""
Statement = self.get_model('statement')
Tag = self.get_model('tag')
session = self.Session()
session.query(Statement).delete()
session.query(Tag).delete()
session.commit()
session.close()
[docs]
def create_database(self):
"""
Populate the database with the tables.
"""
from chatterbot.ext.sqlalchemy_app.models import Base
Base.metadata.create_all(self.engine)
def _session_finish(self, session, statement_text=None):
from sqlalchemy.exc import InvalidRequestError
try:
session.commit()
except InvalidRequestError:
# Log the statement text and the exception
self.logger.exception(statement_text)
finally:
session.close()