from datetime import datetime
from chatterbot.storage import StorageAdapter
from chatterbot.conversation import Statement as StatementObject
# TODO: This list may not be exhaustive.
# Is there a full list of characters reserved by redis?
REDIS_ESCAPE_CHARACTERS = {
'\\': '\\\\',
':': '\\:',
'|': '\\|',
'%': '\\%',
'!': '\\!',
'-': '\\-',
}
REDIS_TRANSLATION_TABLE = str.maketrans(REDIS_ESCAPE_CHARACTERS)
def _escape_redis_special_characters(text):
"""
Escape special characters in a string that are used in redis queries.
"""
return text.translate(REDIS_TRANSLATION_TABLE)
[docs]
class RedisVectorStorageAdapter(StorageAdapter):
"""
.. warning:: BETA feature (Released March, 2025): this storage adapter is new
and experimental. Its functionality and default parameters might change
in the future and its behavior has not yet been finalized.
The RedisVectorStorageAdapter allows ChatterBot to store conversation
data in a redis instance.
All parameters are optional, by default a redis instance on localhost is assumed.
:keyword database_uri: eg: redis://localhost:6379/0',
The database_uri can be specified to choose a redis instance.
:type database_uri: str
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
from chatterbot.vectorstores import RedisVectorStore
from langchain_redis import RedisConfig # RedisVectorStore
from langchain_huggingface import HuggingFaceEmbeddings
self.database_uri = kwargs.get('database_uri', 'redis://localhost:6379/0')
config = RedisConfig(
index_name='chatterbot',
redis_url=self.database_uri,
content_field='in_response_to',
metadata_schema=[
{
'name': 'conversation',
'type': self.RedisMetaDataType.TAG,
},
{
'name': 'text',
'type': self.RedisMetaDataType.TEXT,
},
{
'name': 'created_at',
'type': self.RedisMetaDataType.NUMERIC,
},
{
'name': 'persona',
'type': self.RedisMetaDataType.TEXT,
},
{
'name': 'tags',
'type': self.RedisMetaDataType.TAG,
# 'separator': '|'
},
],
)
# TODO should this call from_existing_index if connecting to
# a redis instance that already contains data?
self.logger.info('Loading HuggingFace embeddings')
# TODO: Research different embeddings
# https://python.langchain.com/docs/integrations/vectorstores/mongodb_atlas/#initialization
embeddings = HuggingFaceEmbeddings(
model_name='sentence-transformers/all-mpnet-base-v2'
)
self.logger.info('Creating Redis Vector Store')
self.vector_store = RedisVectorStore(embeddings, config=config)
[docs]
def get_statement_model(self):
"""
Return the statement model.
"""
from langchain_core.documents import Document
return Document
def model_to_object(self, document):
in_response_to = document.page_content
# If the value is an empty string, set it to None
# to match the expected type (the vector store does
# not use null values)
if in_response_to == '':
in_response_to = None
values = {
'in_response_to': in_response_to,
}
if document.id:
values['id'] = document.id
values.update(document.metadata)
tags = values['tags']
values['tags'] = list(set(tags.split('|') if tags else []))
return StatementObject(**values)
[docs]
def count(self):
"""
Return the number of entries in the database.
"""
'''
TODO
faiss_vector_store = FAISS(
embedding_function=embedding_function,
index=IndexFlatL2(embedding_size),
docstore=InMemoryDocstore(),
index_to_docstore_id={}
)
doc_count = faiss_vector_store.index.ntotal
'''
client = self.vector_store.index.client
return client.dbsize()
[docs]
def remove(self, statement):
"""
Removes the statement that matches the input text.
Removes any responses from statements where the response text matches
the input text.
"""
self.vector_store.delete(ids=[statement.id.split(':')[1]])
[docs]
def filter(self, page_size=4, **kwargs):
"""
Returns a list of objects from the database.
The kwargs parameter can contain any number
of attributes. Only objects which contain all
listed attributes and in which all values match
for all listed attributes will be returned.
kwargs:
- conversation
- persona
- tags
- in_response_to
- text
- exclude_text
- exclude_text_words
- persona_not_startswith
- search_in_response_to_contains
- order_by
"""
from redisvl.query.filter import Tag, Text
# https://redis.io/docs/latest/develop/interact/search-and-query/advanced-concepts/query_syntax/
filter_condition = None
if 'in_response_to' in kwargs:
filter_condition = Text('in_response_to') == kwargs['in_response_to']
if 'conversation' in kwargs:
query = Tag('conversation') == kwargs['conversation']
if filter_condition:
filter_condition &= query
else:
filter_condition = query
if 'persona' in kwargs:
query = Tag('persona') == kwargs['persona']
if filter_condition:
filter_condition &= query
else:
filter_condition = query
if 'tags' in kwargs:
query = Tag('tags') == kwargs['tags']
if filter_condition:
filter_condition &= query
else:
filter_condition = query
if 'exclude_text' in kwargs:
query = Text('text') != '|'.join([
f'%%{text}%%' for text in kwargs['exclude_text']
])
if filter_condition:
filter_condition &= query
else:
filter_condition = query
if 'exclude_text_words' in kwargs:
_query = '|'.join([
f'%%{text}%%' for text in kwargs['exclude_text_words']
])
query = Text('text') % f'-({ _query })'
if filter_condition:
filter_condition &= query
else:
filter_condition = query
if 'persona_not_startswith' in kwargs:
_query = _escape_redis_special_characters(kwargs['persona_not_startswith'])
query = Text('persona') % f'-(%%{_query}%%)'
if filter_condition:
filter_condition &= query
else:
filter_condition = query
if 'text' in kwargs:
_query = _escape_redis_special_characters(kwargs['text'])
query = Text('text') % '|'.join([f'%%{_q}%%' for _q in _query.split()])
if filter_condition:
filter_condition &= query
else:
filter_condition = query
ordering = kwargs.get('order_by', None)
if ordering:
ordering = ','.join(ordering)
if 'search_in_response_to_contains' in kwargs:
_search_text = kwargs.get('search_in_response_to_contains', '')
# TODO similarity_search_with_score
documents = self.vector_store.similarity_search(
_search_text,
k=page_size, # The number of results to return
return_all=True, # Include the full document with IDs
filter=filter_condition,
sort_by=ordering
)
else:
documents = self.vector_store.query_search(
k=page_size,
filter=filter_condition,
sort_by=ordering
)
return [self.model_to_object(document) for document in documents]
[docs]
def create(
self,
text,
in_response_to=None,
tags=None,
**kwargs
):
"""
Creates a new statement matching the keyword arguments specified.
Returns the created statement.
"""
# from langchain_community.vectorstores.redis.constants import REDIS_TAG_SEPARATOR
_default_date = datetime.now()
metadata = {
'text': text,
'category': kwargs.get('category', ''),
# NOTE: `created_at` must have a valid numeric value or results will
# not be returned for similarity_search for some reason
'created_at': kwargs.get('created_at') or int(_default_date.strftime('%y%m%d')),
'tags': '|'.join(tags) if tags else '',
'conversation': kwargs.get('conversation', ''),
'persona': kwargs.get('persona', ''),
}
ids = self.vector_store.add_texts([in_response_to or ''], [metadata])
metadata['created_at'] = _default_date
metadata['tags'] = tags or []
metadata.pop('text')
statement = StatementObject(
id=ids[0],
text=text,
**metadata
)
return statement
[docs]
def create_many(self, statements):
"""
Creates multiple statement entries.
"""
Document = self.get_statement_model()
documents = [
Document(
page_content=statement.in_response_to or '',
metadata={
'text': statement.text,
'conversation': statement.conversation or '',
'created_at': int(statement.created_at.strftime('%y%m%d')),
'persona': statement.persona or '',
'tags': '|'.join(statement.tags) if statement.tags else '',
}
) for statement in statements
]
self.logger.info('Adding documents to the vector store')
self.vector_store.add_documents(documents)
[docs]
def update(self, statement):
"""
Modifies an entry in the database.
Creates an entry if one does not exist.
"""
metadata = {
'text': statement.text,
'conversation': statement.conversation or '',
'created_at': int(statement.created_at.strftime('%y%m%d')),
'persona': statement.persona or '',
'tags': '|'.join(statement.tags) if statement.tags else '',
}
Document = self.get_statement_model()
document = Document(
page_content=statement.in_response_to or '',
metadata=metadata,
)
if statement.id:
self.vector_store.add_texts(
[document.page_content], [metadata], keys=[statement.id.split(':')[1]]
)
else:
self.vector_store.add_documents([document])
[docs]
def get_random(self):
"""
Returns a random statement from the database.
"""
client = self.vector_store.index.client
random_key = client.randomkey()
if random_key:
random_id = random_key.decode().split(':')[1]
documents = self.vector_store.get_by_ids([random_id])
if documents:
return self.model_to_object(documents[0])
raise self.EmptyDatabaseException()
[docs]
def drop(self):
"""
Remove all existing documents from the database.
"""
index_name = self.vector_store.config.index_name
client = self.vector_store.index.client
for key in client.scan_iter(f'{index_name}:*'):
# self.vector_store.index.drop_keys(key)
client.delete(key)
# Commenting this out for now because there is no step
# to recreate the index after it is dropped (really what
# we want is to delete all the keys in the index, but
# keep the index itself)
# self.vector_store.index.delete(drop=True)