Source code for chatterbot.storage.redis

from datetime import datetime
import json
import re
from chatterbot.storage import StorageAdapter
from chatterbot.conversation import Statement as StatementObject


def _escape_redis_special_characters(text):
    """
    Escape special characters in a string that are used in redis queries.

    This function escapes characters that would interfere with the query syntax
    used in the filter() method, specifically:
    - Pipe (|) which is used as the OR operator when joining search terms
    - Characters that could break the wildcard pattern matching
    """
    from redisvl.query.filter import TokenEscaper

    # Remove space (last character) and add pipe
    escape_pattern = TokenEscaper.DEFAULT_ESCAPED_CHARS.rstrip(' ]') + r'\|]'

    escaper = TokenEscaper(escape_chars_re=re.compile(escape_pattern))
    return escaper.escape(text)


[docs] class RedisVectorStorageAdapter(StorageAdapter): """ .. warning:: BETA feature (Released March, 2025): this storage adapter is new and experimental. Its functionality and default parameters might change in the future and its behavior has not yet been finalized. The RedisVectorStorageAdapter allows ChatterBot to store conversation data in a redis instance using vector embeddings for semantic similarity search. All parameters are optional, by default a redis instance on localhost is assumed. :keyword database_uri: eg: redis://localhost:6379/0', The database_uri can be specified to choose a redis instance. :type database_uri: str :keyword embedding_model: The name of the embedding model to use. Default: 'sentence-transformers/all-mpnet-base-v2' (768-dim, balanced speed/quality). Alternatives: 'all-MiniLM-L6-v2' (384-dim, faster), 'multi-qa-mpnet-base-dot-v1' (768-dim, Q&A optimized), 'paraphrase-multilingual-mpnet-base-v2' (768-dim, multilingual). :type embedding_model: str :keyword embedding_provider: The embedding provider to use. Options: 'huggingface' (default), 'openai', 'cohere'. Requires corresponding packages (langchain-openai, langchain-cohere). :type embedding_provider: str :keyword embedding_kwargs: Additional keyword arguments to pass to the embedding provider. For HuggingFace: model_kwargs (device, torch_dtype), encode_kwargs (normalize_embeddings, batch_size). For OpenAI: model name (e.g., 'text-embedding-3-small'), dimensions. For Cohere: model name (e.g., 'embed-english-v3.0'). :type embedding_kwargs: dict Architecture: ------------- Unlike SQL storage adapters that use indexed text fields (search_text, search_in_response_to) for string-based similarity matching, Redis uses vector embeddings for semantic similarity. The 'in_response_to' field is embedded as a vector, enabling the system to find statements that respond to semantically similar inputs. When used with SemanticVectorSearch, this adapter returns the best matching response directly from Phase 1 search. The semantic vector similarity already captures contextual closeness, making the traditional Phase 2 variation search (used in indexed text search) redundant. For SQL with indexed text search: - Phase 1 finds a match based on string similarity (Levenshtein distance) - Phase 2 finds variations of that match to get diverse responses - This makes sense because you might have multiple instances of similar statements learned from different conversations that provide different response options For Redis with semantic vectors: - Phase 1 finds semantically similar responses using vector embeddings - The semantic similarity already captures the "closeness" we want - Phase 2 would be redundant - we already have the best semantic match - The vector search inherently considers the entire semantic space, not just exact string matches, so additional variation searching is unnecessary NOTES: * Unlike other database based storage adapters, the RedisVectorStorageAdapter does not leverage `search_text` and `search_in_response_to` fields for indexing. Instead, it uses vector embeddings to find similar statements based on semantic similarity. This allows for more flexible and context-aware matching. """
[docs] class RedisMetaDataType: """ Subclass for redis config metadata type enumerator. """ TAG = 'tag' TEXT = 'text' NUMERIC = 'numeric'
def __init__(self, **kwargs): super().__init__(**kwargs) from chatterbot.vectorstores import RedisVectorStore from langchain_redis import RedisConfig self.database_uri = kwargs.get('database_uri', 'redis://localhost:6379/0') # https://reference.langchain.com/python/integrations/langchain_redis/ config = RedisConfig( index_name='chatterbot', redis_url=self.database_uri, content_field='in_response_to', legacy_key_format=False, metadata_schema=[ { 'name': 'conversation', 'type': self.RedisMetaDataType.TAG, }, { 'name': 'text', 'type': self.RedisMetaDataType.TEXT, }, { 'name': 'created_at', 'type': self.RedisMetaDataType.NUMERIC, }, { 'name': 'persona', 'type': self.RedisMetaDataType.TEXT, }, { 'name': 'tags', 'type': self.RedisMetaDataType.TAG, # 'separator': '|' }, ], ) # Configure embedding model embedding_provider = kwargs.get('embedding_provider', 'huggingface').lower() embedding_model = kwargs.get( 'embedding_model', 'sentence-transformers/all-mpnet-base-v2' ) embedding_kwargs = kwargs.get('embedding_kwargs', {}) self.logger.info(f'Loading {embedding_provider} embeddings: {embedding_model}') # Initialize embeddings based on provider if embedding_provider == 'huggingface': from langchain_huggingface import HuggingFaceEmbeddings embeddings = HuggingFaceEmbeddings( model_name=embedding_model, **embedding_kwargs ) elif embedding_provider == 'openai': try: from langchain_openai import OpenAIEmbeddings embeddings = OpenAIEmbeddings( model=embedding_model, **embedding_kwargs ) except ImportError: raise ImportError( "OpenAI embeddings require 'langchain-openai' package. " "Install with: pip install langchain-openai" ) elif embedding_provider == 'cohere': try: from langchain_cohere import CohereEmbeddings embeddings = CohereEmbeddings( model=embedding_model, **embedding_kwargs ) except ImportError: raise ImportError( "Cohere embeddings require 'langchain-cohere' package. " "Install with: pip install langchain-cohere" ) else: raise ValueError( f"Unsupported embedding provider: {embedding_provider}. " "Supported providers: 'huggingface', 'openai', 'cohere'" ) self.logger.info('Creating Redis Vector Store') self.vector_store = RedisVectorStore(embeddings, config=config)
[docs] def get_preferred_tagger(self): """ Redis uses vector embeddings and doesn't need POS-lemma indexing. Returns NoOpTagger to avoid unnecessary spaCy processing. """ from chatterbot.tagging import NoOpTagger return NoOpTagger
[docs] def get_preferred_search_algorithm(self): """ Redis uses semantic vector search instead of text-based matching. Returns the name of the SemanticVectorSearch algorithm. """ return 'semantic_vector_search'
[docs] def get_statement_model(self): """ Return the statement model. """ from langchain_core.documents import Document # Add the extra_statement_field_names attribute expected by StorageAdapter if not hasattr(Document, 'extra_statement_field_names'): Document.extra_statement_field_names = [] return Document
def _calculate_confidence_from_distance(self, distance): """ Convert Redis cosine distance to confidence score. :param distance: Cosine distance from Redis (0 = identical, 2 = opposite) :return: Confidence score (1.0 = identical, 0.0 = opposite) """ if distance is not None: return max(0.0, 1.0 - (float(distance) / 2.0)) return 0.0 def _add_confidence_to_results(self, results): """ Add confidence scores to similarity search results. :param results: List of (document, distance) tuples from similarity_search_with_score :return: List of documents with confidence in metadata """ documents = [] for doc, distance in results: doc.metadata['confidence'] = self._calculate_confidence_from_distance(distance) documents.append(doc) return documents def model_to_object(self, document): in_response_to = document.page_content # If the value is an empty string, set it to None # to match the expected type (the vector store does # not use null values) if in_response_to == '': in_response_to = None values = { 'in_response_to': in_response_to, } if document.id: values['id'] = document.id values.update(document.metadata) # Convert Unix timestamp back to datetime for StatementObject # Redis may return this as int, float, or string representation if 'created_at' in values: created_at_value = values['created_at'] if isinstance(created_at_value, str): # Convert string to float first created_at_value = float(created_at_value) if isinstance(created_at_value, (int, float)): values['created_at'] = datetime.fromtimestamp(created_at_value) tags = values['tags'] values['tags'] = list(set(tags.split('|') if tags else [])) return StatementObject(**values)
[docs] def count(self) -> int: """ Return the number of statement entries in the database. """ index_name = self.vector_store.config.index_name client = self.vector_store.index.client # Count only keys matching the ChatterBot index prefix count = 0 for _ in client.scan_iter(f'{index_name}:*'): count += 1 return count
[docs] def remove(self, statement): """ Removes the statement that matches the input text. Removes any responses from statements where the response text matches the input text. """ client = self.vector_store.index.client client.delete(statement.id)
[docs] def filter(self, page_size=4, **kwargs): """ Returns a list of objects from the database. The kwargs parameter can contain any number of attributes. Only objects which contain all listed attributes and in which all values match for all listed attributes will be returned. kwargs: - conversation - persona - tags - in_response_to - text - exclude_text - exclude_text_words - persona_not_startswith - search_text_contains - search_in_response_to_contains - order_by """ from redisvl.query.filter import Tag, Text # https://redis.io/docs/latest/develop/interact/search-and-query/advanced-concepts/query_syntax/ filter_condition = None ordering = kwargs.get('order_by', None) if ordering: ordering = ','.join(ordering) if 'in_response_to' in kwargs: filter_condition = Text('in_response_to') == kwargs['in_response_to'] if 'conversation' in kwargs: query = Tag('conversation') == kwargs['conversation'] if filter_condition: filter_condition &= query else: filter_condition = query if 'persona' in kwargs: query = Tag('persona') == kwargs['persona'] if filter_condition: filter_condition &= query else: filter_condition = query if 'tags' in kwargs: query = Tag('tags') == kwargs['tags'] if filter_condition: filter_condition &= query else: filter_condition = query if 'exclude_text' in kwargs: query = Text('text') != '|'.join([ f'%%{text}%%' for text in kwargs['exclude_text'] ]) if filter_condition: filter_condition &= query else: filter_condition = query if 'exclude_text_words' in kwargs and kwargs['exclude_text_words']: _query = '|'.join([ f'%%{text}%%' for text in kwargs['exclude_text_words'] ]) query = Text('text') % f'-({_query})' if filter_condition: filter_condition &= query else: filter_condition = query if 'persona_not_startswith' in kwargs: _query = _escape_redis_special_characters(kwargs['persona_not_startswith']) query = Text('persona') % f'-(%%{_query}%%)' if filter_condition: filter_condition &= query else: filter_condition = query if 'text' in kwargs: _query = _escape_redis_special_characters(kwargs['text']) query = Text('text') % '|'.join([f'%%{_q}%%' for _q in _query.split()]) if filter_condition: filter_condition &= query else: filter_condition = query if 'search_text_contains' in kwargs: # Find statements whose text (responses) are similar. # # Use semantic similarity on the search query itself. This finds responses # that would be semantically appropriate, even if they don't share exact words. # # Our vectors are of 'in_response_to' (what was said TO the bot), # not 'text' (what the bot said). So we use the query as if it were an input, # and find statements that would respond to similar inputs. The result is # statements whose context (in_response_to) is similar, which tends to yield # similar responses. _search_query = kwargs['search_text_contains'] results = self.vector_store.similarity_search_with_score( _search_query, k=page_size, # The number of results to return return_all=True, # Include the full document with IDs filter=filter_condition, sort_by=ordering ) documents = self._add_confidence_to_results(results) return [self.model_to_object(document) for document in documents] # Redis uses vector similarity: we search for statements whose actual # text field is semantically similar to the text that produced this search_text. # This is stored in the closest_match.text field, but BestMatch only passes # search_text. Since we can't reverse POS tags to original text (for now), # we treat this parameter as a signal to do text-based similarity search. # # Note: The caller should ideally pass the actual text, but for compatibility # we'll work with what we receive. In practice, search_text_contains is the # better parameter for this use case. if 'search_text' in kwargs: # For now, we'll treat search_text as a filter-only parameter # and fall through to the regular query_search below. # This prevents the broken behavior of embedding POS tags. # The proper fix requires BestMatch to pass additional context # or use search_text_contains instead. pass ordering = kwargs.get('order_by', None) if ordering: # Redis can't sort by 'id' (it's the key, not a field) # Use 'created_at' instead which provides chronological ordering ordering = ['created_at' if field == 'id' else field for field in ordering] ordering = ','.join(ordering) if 'search_in_response_to_contains' in kwargs: _search_text = kwargs.get('search_in_response_to_contains', '') results = self.vector_store.similarity_search_with_score( _search_text, k=page_size, # The number of results to return return_all=True, # Include the full document with IDs filter=filter_condition, sort_by=ordering ) documents = self._add_confidence_to_results(results) else: documents = self.vector_store.query_search( k=page_size, filter=filter_condition, sort_by=ordering ) return [self.model_to_object(document) for document in documents]
[docs] def create( self, text, in_response_to=None, tags=None, **kwargs ): """ Creates a new statement matching the keyword arguments specified. Returns the created statement. """ # from langchain_community.vectorstores.redis.constants import REDIS_TAG_SEPARATOR _default_date = datetime.now() # Prevent duplicate tag entries in the database unique_tags = list(set(tags)) if tags else [] # Handle created_at: convert datetime to timestamp if needed created_at_value = kwargs.get('created_at') if isinstance(created_at_value, datetime): created_at_timestamp = created_at_value.timestamp() elif created_at_value: created_at_timestamp = created_at_value else: created_at_timestamp = _default_date.timestamp() metadata = { 'text': text, 'category': kwargs.get('category', ''), # Store created_at as Unix timestamp with microseconds (float) # This provides full datetime precision while maintaining Redis NUMERIC field compatibility 'created_at': created_at_timestamp, 'tags': '|'.join(unique_tags) if unique_tags else '', 'conversation': kwargs.get('conversation', ''), 'persona': kwargs.get('persona', ''), } ids = self.vector_store.add_texts([in_response_to or ''], [metadata]) metadata['created_at'] = _default_date metadata['tags'] = unique_tags metadata.pop('text') statement = StatementObject( id=ids[0], text=text, in_response_to=in_response_to, **metadata ) return statement
[docs] def create_many(self, statements): """ Creates multiple statement entries. """ Document = self.get_statement_model() documents = [ Document( page_content=statement.in_response_to or '', metadata={ 'text': statement.text, 'conversation': statement.conversation or '', 'created_at': statement.created_at.timestamp(), 'persona': statement.persona or '', # Prevent duplicate tag entries in the database 'tags': '|'.join( list(set(statement.tags)) ) if statement.tags else '', } ) for statement in statements ] self.logger.info('Adding documents to the vector store') self.vector_store.add_documents(documents)
[docs] def update(self, statement): """ Modifies an entry in the database. Creates an entry if one does not exist. """ # Prevent duplicate tag entries in the database unique_tags = list(set(statement.tags)) if statement.tags else [] metadata = { 'text': statement.text, 'conversation': statement.conversation or '', 'created_at': statement.created_at.timestamp(), 'persona': statement.persona or '', 'tags': '|'.join(unique_tags) if unique_tags else '', } Document = self.get_statement_model() document = Document( page_content=statement.in_response_to or '', metadata=metadata, ) if statement.id: # When updating with an existing ID, first delete the old entry # to ensure a duplicate entry is not created client = self.vector_store.index.client client.delete(statement.id) # Extract the key from the full ID (format: prefix:key) if ':' in statement.id: key = statement.id.split(':', 1)[1] else: # If no delimiter found, use the entire ID as the key key = statement.id ids = self.vector_store.add_texts( [document.page_content], [metadata], keys=[key] ) else: self.vector_store.add_documents([document])
[docs] def get_random(self): """ Returns a random statement from the database. """ client = self.vector_store.index.client random_key = client.randomkey() if random_key: # Get the hash data from Redis data = client.hgetall(random_key) if data and b'_metadata_json' in data: # Parse the metadata metadata = json.loads(data[b'_metadata_json'].decode()) # Convert created_at from Unix timestamp back to datetime if 'created_at' in metadata and isinstance(metadata['created_at'], (int, float)): metadata['created_at'] = datetime.fromtimestamp(metadata['created_at']) # Get the in_response_to from the hash in_response_to = data.get(b'in_response_to', b'').decode() # Create a Document-like object to use with model_to_object Document = self.get_statement_model() document = Document( page_content=in_response_to if in_response_to else '', metadata=metadata, id=random_key.decode() ) return self.model_to_object(document) raise self.EmptyDatabaseException()
[docs] def drop(self): """ Remove all existing documents from the database. """ index_name = self.vector_store.config.index_name client = self.vector_store.index.client for key in client.scan_iter(f'{index_name}:*'): # self.vector_store.index.drop_keys(key) client.delete(key)
# Commenting this out for now because there is no step # to recreate the index after it is dropped (really what # we want is to delete all the keys in the index, but # keep the index itself) # self.vector_store.index.delete(drop=True)
[docs] def close(self): """ Close the Redis client connection. """ if hasattr(self, 'vector_store') and hasattr(self.vector_store, 'index'): if hasattr(self.vector_store.index, 'client'): self.vector_store.index.client.close()